CORRIGENDUM

F. Diness, J. Beyer, M. Meldal*.....8056–8066

Solid-Phase Synthesis of Tetrahydro-βcarbolines and Tetrahydroisoquinolines by Stereoselective Intramolecular N-Carbamyliminium Pictet-Spengler Reactions

Chem. Eur. J., 2006, 31

DOI: 10.1002/chem.200600138

In the Full Paper by Meldal et al., compound numbers in the second column of Table 3 are incorrect. Compound numbers **14**, **20** and **21** should be changed to **11**, **14** and **15**, respectively. The correct table is shown below. The authors apologise for this error.

Table 3. Products, conditions, reaction times, and purities/yields for compounds in Scheme 5.

Product	Building block	Conditions (% aq TFA)	Reaction time [h]	Yield ^[a] / purity ^[b] [%]
3	1a	10	2	92 ^[a]
5a	1a	10	1	92 ^[b]
5b	1b	10	1	90 ^[b]
5c	1c	10	1	90 ^[b]
5d	1d	10	1	92 ^[b]
5 e	1e	10	1	95 ^[b]
5 f	1 f	10	1	95 ^[b]
18 a	11	10	1	94 ^[a]
18b	11	10	1	$> 95^{[b]}$
18 c	11	10	1	$> 95^{[b]}$
18 d	11	10	1	>95 ^[b]
18 e	11	95	1	$> 95^{[b]}$
18 f	11	50	1	$> 95^{[b]}$
18 g	11	95	1	>95 ^[b]
18i	11	95	1	$> 95^{[b]}$
18 j	11	95	1	>95 ^[b]
18 k	11	95	1	95 ^[b]
20 h	15	TFA	24	95 ^[b]
21 a	15	10	2	$> 95^{[b]}$
21b	15	10	2	$> 95^{[b]}$
21 c	15	10	2	$> 95^{[b]}$
21 d	15	10	2	$> 95^{[b]}$
21 e	15	95	0.5	$> 95^{[b]}$
21 f	15	95	2	95 ^[b]
21 g	14	10	1	70 ^[b,c]
22 a	15	95/air	5	>95 ^[b]
22 b	15	95/air	5	$> 95^{[b]}$
22 c	15	95/air	5	$> 95^{[b]}$
22 d	15	95/air	120	$> 95^{[b]}$
22 e	15	95/air	120	$> 95^{[b]}$
22 f	15	95/air	168	$> 95^{[b]}$
22 g	14	95/air	5	95 ^[b]

[a] The yield was determined as the yield of isolated pure compound. [b] The purity of the crude product determined by HPLC, ESIMS, and NMR spectroscopy. [c] The remaining $\approx\!30\,\%$ was the oxidized form (22 g) and several attempts to isolate the pure 21 g failed. Compounds 19 g and/or 22 g were found as major impurities in all cases.